44. Wildcard Matching | 72. Edit Distance

你快乐吗

Posted by bbkgl on April 9, 2020

天若有情天亦老

人间正道是沧桑

44. Wildcard Matching

给出dfs+记忆搜索的。。。

class Solution {
public:
    int match(const char *a, const char *b, const char *ab, const char *bb, vector<vector<int>> &dp) {
        if (dp[a - ab][b - bb]) return dp[a - ab][b - bb];
        if (*a == 0 && *b == 0) return dp[a - ab][b - bb] = 1;
        if (*a == *b || (*b == '?' && *a))
            return dp[a - ab][b - bb] = match(a + 1, b + 1, ab, bb, dp);
        else if (*b == '*') {
            if (*a) {
                bool ans = (match(a + 1, b, ab, bb, dp) > 0) || (match(a + 1, b + 1, ab, bb, dp) > 0) || (match(a, b + 1, ab, bb, dp) > 0);
                if (ans)
                    return dp[a - ab][b - bb] = 1;
                else return dp[a - ab][b - bb] = -1;
            }
            else return dp[a - ab][b - bb] = match(a, b + 1, ab, bb, dp);
        } else return dp[a - ab][b - bb] = -1;
    }

    bool isMatch(string s, string p) {
        vector<vector<int>> dp(s.length() + 1, vector<int>(p.length() + 1, 0));
        return match(s.data(), p.data(), s.data(), p.data(), dp) == 1;
    }
};

然后可简化成dp。。。但是dp不如上面的块。。。

class Solution {
public:
    bool isMatch(string s, string p) {
        vector<vector<bool>> dp(s.length() + 1, vector<bool>(p.length() + 1, false));
        dp[0][0] = true;
        for (int j = 1; j <= p.length(); j++) {
            if (p[j - 1] == '*') dp[0][j] = true;
            else break;
        }
        for (int i = 1; i <= s.length(); i++) {
            for (int j = 1; j <= p.length(); j++) {
                if (p[j - 1] == '*')
                    dp[i][j] = dp[i][j - 1] || dp[i - 1][j] || dp[i - 1][j - 1];
                else if (s[i - 1] == p[j - 1] || p[j - 1] == '?')
                    dp[i][j] = dp[i - 1][j - 1];
                else dp[i][j] = false;
            }
        }
        return dp[s.length()][p.length()];
    }
};

72. Edit Distance

dp[i][j]表示word1前i个字母最少可以经过dp[i][j]次操作变成word2的前j个字母。

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.length(), n = word2.length();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        for (int i = 0; i <= m; i++) dp[i][0] = i;
        for (int j = 0; j <= n; j++) dp[0][j] = j;
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (word1[i-1] == word2[j-1]) {
                    int minitem = min(dp[i-1][j-1], dp[i-1][j] + 1);
                    dp[i][j] = min(minitem, dp[i][j-1] + 1);
                } else {
                    dp[i][j] = 1 + min(dp[i][j-1], min(dp[i-1][j], dp[i-1][j-1]));
                }
            }
        }
        return dp[m][n];
    }
};